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LETTER TO THE EDITOR 

The speed of sound in moderately dense gases? 

John M BlattS 
Quantum Chemistry Group, University of Uppsala, Uppsala, Sweden 

Received 4 May 1976 

Abstract, We present and discuss a theoretical prediction concerning the density correction 
term to the speed of sound in a monatomic gas. We predict that this correction term 
disappears at frequencies in excess of the frequency of three-particle collisions between gas 
atoms; i.e., the speed of sound reverts to the ideal gas value at these higher frequencies. 
Since the rate of ternary collisions is slow and can be varied by varying the density of the gas, 
experimental verification of this theoretical prediction appears eminently possible, at 
frequencies in the normal acoustic range. Estimates are given of the magnitude of the 
expected effect. 

At low enough frequencies, the speed of sound in a gas can be computed purely 
thermodynamically, from the adiabatic compressibility. The argument for this is quite 
general and is accepted universally. If the gas is only moderately dense, so that its 
equation of state is well approximated by the first two terms of the virial series: 

p V = N k T [ l + ( N / V ) B ( T ) + .  * .] (1) 
then the result for the speed of sound c is: 

c = c o [ l + ( N / V ) 4 ( T ) + .  . .]. 
Here co is the ideal gas value of the speed of sound: 

CO = (5kT/3m)”z 
and the coefficient 4(T) can be computed from the second virial coefficient B(7‘) and its 
first two derivatives with respect to the temperature: 

(4) 
These standard results certainly hold at low enough frequencies. But just what is 

‘low enough’? As an example, consider hydrogen gas, where atoms may associate into 
binary molecules Hz. The thermodynamic equation of state relates the pressurep to the 
absolute temperature T and to the number densityN/Vof protons. In thermodynamics, 
it is assumed that the system is in full equilibrium at any one temperature and pressure; 
this includes chemical equilibrium between hydrogen atoms and hydrogen molecules. 
Yet, no one would calculate the speed of sound in actual hydrogen from this equation of 
state. It is well known that the rate of chemical reactions is too slow for this. The 

4 (T) = B (T) +$“( r )  +i?jT2B”( T). 

t Work done while author was on sabbatical leave from the School of Mathematics, University of New South 
Wales, Kensington, NSW, Australia. 
$ Now returned to School of Mathematics, University of New South Wales. 

L99 



L100 letter to the Editor 

‘adiabatic compressibility’ which enters the general formula for the speed of sound is 
actually computed by considering the gas as a mixture of two gases, one a gas of 
hydrogen atoms, the other a gas of hydrogen molecules, each with given, time- 
independent numbers of particles. The sound wave oscillates too rapidly to permit 
attainment of full equilibrium; the ‘equilibrium’ on which the calculation is based is only 
a partial, hindered equilibrium, not full thermodynamic equilibrium. 

This argument establishes: (i) the coefficient q ( T )  in equation (2) may be a function 
of the frequency of the sound, not only a function of the temperature; as a function of 
the frequency it may show significant frequency dependence at extremely low frequen- 
cies; (ii) there may exist regions of frequency, other than the extreme low-frequency 
region, in which ‘simple’ results can be expected for the speed of sound, but the simple 
result may differ from the extreme low-frequency, full thermodynamic value. 

In this letter, we make a theoretical prediction concerning the speed of sound in 
monatomic gases of moderate density. This prediction is based on new transport 
equations developed recently (Barber et a1 1975). These equations allow for time- 
dependent pair correlations in the distribution function of the gas, and for the effect of 
binary collisions. They do not, in the form given in Barber et a1 (1975), allow for the 
effects of ternary and higher-order collisions. 

The equations of Barber et a1 (1975) are consistent with the equilibrium distribution 
function of the gas (in the same approximation as equation (1)); but unlike the 
Boltzmann equation, the new equations do not provide an automatic approach to the 
equilibrium state from an arbitrary state. To get that, one would have to include the 
effects of at least ternary collisions. With binary collisions only, it turns out that the pair 
correlation function defined by: 

4 1 , 2 )  =f2(1,2)-f1(l)f1(2) ( 5 )  

satisfies an approximate conservation law: 

J g ( 1 , 2 )  = constant in time (6)  

where the integration is over the full phase space of the two particles. This conservation 
law is inconsistent with an approach to full equilibrium, because the integral (6)  has a 
definite, temperature-dependent value in the equilibrium state (that value is closely 
related to the second virial coefficient B(7‘) in equation (l)), and thus the value of the 
integral (6) must change as the temperature is changed. Since the temperature within a 
sound wave is not constant (conditions are adiabatic, not isothermal) we see that the 
approximate conservation law (6) cannot be reconciled with the argument which leads 
to the thermodynamic sound velocity (2), (3), and (4). 

Of course, (6) is only an approximation. It is obtained from equations which ignore 
ternary and higher-order collisions, and thus (6) holds only up to time intervals of the 
order of a mean free time between ternary collisions. The inverse of this mean free time 
is a frequency, which we shall denote by the symbol F. This can be estimated to be of 
order: 

F - (N/  V2b %rJ (7) 
where N /  V is the number of gas atoms, CO is given by (3) and represents an estimate of 
the mean speed of gas atoms, and b is a length of the order of the range of interaction 
between gas atoms, presumably between cm and 4 x lo-* cm. For krypton at 
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normal temperature and pressure, this yields 1.4 X lo3 F < 1.4 x lo6 Hz for the 
critical frequency F. Furthermore, Fvaries with the square of the density of the gas, and 
is therefore easily variable by the experimenter. For a pressure of 0.1 atm, we get 
14 < F < 14000 Hz, completely within the normal acoustic range. 

The thermodynamic value for the speed of sound applies at sound frequencies f well 
below F. For f >> F, on the other hand, the approximate conservation law (6) is effective, 
and the value of the speed of sound is different from the thermodynamic result. 

The equations of Barber et a1 (1975) can be solved by using the same approxima- 
tions which lead from the Boltzmann equation (applicable to a very dilute gas) to the 
dilute-gas result (3) for the speed of sound. One assumes that the wavelength of the 
sound is much longer than a mean free path between successive binary collisions, and 
one expands the deviation of the one-particle reduced distribution function f l  from the 
equilibrium (Maxwell) distribution in a series of Burnett functions (Foch and Ford 
1970). Only the lowest few terms are retained-for the speed (but not the attenuation) 
of sound it suffices to retain just three Burnett functions (see Foch and Ford 1970, pp 

Although the calculation with the new equations is rather more complex than with 
the Boltzmann equation, the final result is simple: at sound frequencies f well in excess of 
F the speed of sound reverts to its zero density value, equation (3) ;  the density correction 
factor q in equation (2) becomes zero. 

Striking as this effect is, it is not likely to have been observed accidentally. F lies in 
the normal acoustic range only if the pressure is rather low, probably between 0.1 and 
1 atm. At these low pressures, the entire density correction to the speed of sound is 
small, of the order of lo-’ to This is possible to see if one looks for it specifically, 
but it is unlikely to have been seen accidentally. 

Consider an acoustic cavity filled with a monatomic gas. The resonant frequency f is 
a geometrical constant times the speed of sound. Thus one way to look for the new effect 
is to measure f as a function of the density N /  V of the gas filling the cavity. Within the 
range of validity of equation (2), f is a linear function of N/V,  extrapolating to some 
definite value f o  for a very dilute gas. However, the linear relation fails when F, as 
estimated by (7), drops below f .  At densities below that point, f should approach f o  
much faster than merely linearly, and should then remain independent of density, equal 
to f o .  If the resonant frequency of the cavity is in the acoustic range, the crossover point 
is expected to be between 0.1 and 1 atm, and an accuracy better than 1 part in lo4 must 
be maintained to see the effect (this includes temperature control to that accuracy, and 
an adequate Q-value for the cavity). It may be easier to go to somewhat higher 
frequencies; at lo6 Hz, the crossover point should be between 1 and 10 atm, and an 
accuracy of better than 0.1% should suffice. 

158-9). 

In conclusion, it gives me great pleasure to thank Professor Per-Olof Liiwdin and the 
Swedish Nobel Committee for Physics for the award of a fellowship in aid of the visit 
during which this work was done, and for the excellent hospitality of the Institute for 
Quantum Chemistry. 
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